
 1

University of Victoria

Department of Electrical Engineering & Computer Science

ECE 355 – Microprocessor-Based Systems

Project Report

Fall Term 2020

PWM Signal Generation and Monitoring System

December 2, 2020

Branden Voss

V00913539

Electrical Engineering

brandenvoss97@hotmail.com

December 2, 2020

B09

Report Marking

The lab report marks are distributed as follows:

 Problem Description/Specifications (5) _______

 Design/Solution (15) _______

 Testing/Results (10) _______

 Discussion (15) _______

 Code Design and Documentation (15) _______

 Total (60) _______

 i

Executive Summary
Electrical and Computer Engineering 355 is a course intended to develop a general

understanding of the operation, programming, application and design of 32-bit microprocessor-

based systems. In particular, the lab section of this course requires students to develop a system

for PWM signal generation and monitoring. An external 4N35 Optocoupler, driven by a

microcontroller will be used to control the frequency of the PWM signal generated by an

external 555 timer. The microcontroller on the STMF0 Discovery board is used to measure the

voltage across a potentiometer and relay it to the optocoupler for signal frequency control. Both

the measured frequency and corresponding potentiometer resistance are to be displayed on an

LCD. Students are expected to develop an embedded system using the C-programming language

for this specific implementation [1].

 ii

Table of Contents

LIST OF FIGURES .. III

LIST OF TABLES ... III

GLOSSARY .. IV

PROJECT DESCRIPTION ... 1

DESIGN PROCESS ... 2

DESIGN APPROACH ... 2

DESIGN IMPLEMENTATION ... 4

ADC ... 4

DAC ... 6

LCD .. 7

ANALYSIS ... 10

REFLECTION AND RECOMMENDATIONS .. 12

CONCLUSION ... 13

BIBLIOGRAPHY ... 14

APPENDIX A – COMPLETE LISTING OF ANNOTATED CODE .. 1

 iii

List of Figures

Figure 1: PWM Signal Generation and Monitoring System Diagram .. 1

Figure 2: Introductory Lab Part 2 Set-up .. 2

Figure 3: Pseudo Code .. 3

Figure 4: PC1 as Analog Input to ADC .. 4

Figure 5: myConverter_Init Function ... 5

Figure 6: System Path (DAC to Optocoupler) .. 6

Figure 7: myLCD_Init Function ... 7

Figure 8: myRes_Calc Function (Identical to myFreq_Calc Function).. 8

Figure 9: Working LCD Display .. 9

Figure 10: myLCD_Display Function .. 9

Figure 11: Comparison of LCD and Console Output ... 10

List of Tables

Table 1: Pin Map for LCD Interface ... 3

file://///Users/brandenvoss/Documents/Engineering/Third_Year_Eng/Fall_2020/ECE_355/Lab/ECE355_projectReport.docx%23_Toc57813109
file://///Users/brandenvoss/Documents/Engineering/Third_Year_Eng/Fall_2020/ECE_355/Lab/ECE355_projectReport.docx%23_Toc57813110
file://///Users/brandenvoss/Documents/Engineering/Third_Year_Eng/Fall_2020/ECE_355/Lab/ECE355_projectReport.docx%23_Toc57813111
file://///Users/brandenvoss/Documents/Engineering/Third_Year_Eng/Fall_2020/ECE_355/Lab/ECE355_projectReport.docx%23_Toc57813112
file://///Users/brandenvoss/Documents/Engineering/Third_Year_Eng/Fall_2020/ECE_355/Lab/ECE355_projectReport.docx%23_Toc57813113
file://///Users/brandenvoss/Documents/Engineering/Third_Year_Eng/Fall_2020/ECE_355/Lab/ECE355_projectReport.docx%23_Toc57813114
file://///Users/brandenvoss/Documents/Engineering/Third_Year_Eng/Fall_2020/ECE_355/Lab/ECE355_projectReport.docx%23_Toc57813115
file://///Users/brandenvoss/Documents/Engineering/Third_Year_Eng/Fall_2020/ECE_355/Lab/ECE355_projectReport.docx%23_Toc57813116
file://///Users/brandenvoss/Documents/Engineering/Third_Year_Eng/Fall_2020/ECE_355/Lab/ECE355_projectReport.docx%23_Toc57813117
file://///Users/brandenvoss/Documents/Engineering/Third_Year_Eng/Fall_2020/ECE_355/Lab/ECE355_projectReport.docx%23_Toc57813118
file://///Users/brandenvoss/Documents/Engineering/Third_Year_Eng/Fall_2020/ECE_355/Lab/ECE355_projectReport.docx%23_Toc57813119
file://///Users/brandenvoss/Documents/Engineering/Third_Year_Eng/Fall_2020/ECE_355/Lab/ECE355_projectReport.docx%23_Toc57813134

 iv

Glossary

PWM Pulse width modulation

NE555 Timer Timing circuits that are highly stable controllers capable of

producing accurate time delays or oscillation

4N35 Optocoupler Electronic component for transferring signals between two isolated

circuits

POT Potentiometer

Microcontroller A small computer with memory and programmable input/output

ADC Analog-to-digital converter

DAC Digital-to-analog converter

LCD Liquid crystal display

trace_printf C-programming syntax used in the Eclipse IDE on the

STM32F051R8T6 microcontroller for printing to console

 1

Project Description
Through the use of techniques and topics discussed in ECE 355 and other applicable areas of

study, students are expected to individually develop an embedded system for monitoring and

controlling a PWM signal. For this project, an LCD is used to display the signal frequency and

potentiometer resistance. The system utilizes the STM32F051R8T6 microcontroller mounted on

the STM32F0 Discovery board along with external; potentiometer, NE555 timer, 4N35

optocoupler and LCD as presented in figure 1. The STM32F0 Discovery board features a built-in

analog-to-digital converter (ADC) used to measure the analog voltage signal from the

potentiometer through a polling approach. Additionally, the board houses a digital-to-analog

converter (DAC) used to drive the optocoupler to adjust the signal frequency of the 555 timer

based off of the ADC voltage reading. The corresponding pin, signal and direction are mapped

out for each respective piece of hardware in the above figure. Lastly, an 8-bit parallel interface is

used to communicate with the LCD through 4 control pins and 8 data pins are also mapped [1].

Figure 1: PWM Signal Generation and Monitoring System

Diagram [1]

 2

Design Process
The ensuing portion of the report will provide insight into the design procedure for this project.

The next two subsections will expand upon the initial design intentions and development,

followed by the final implementation. This part of the report is expected to give insight into both

the design and function of the system for simplicity of explanation and understanding.

Design Approach
In part 2 of the introductory lab, students measured and wrote to the console both the

period and frequency of a square-wave signal from a function generator. A C-program

template was provided for the laboratory session and required students to write code in

order to access the necessary ports, registers and timers. This program was intended to

determine the number of clock cycles elapsed between two consecutive rising edges of

the function generators signal. The lab set-up is shown in figure 2 below. This

implementation made use of a general-purpose timer TIM2 to measure the frequency of

the input signal and record the current count value of the timer pulses in the TIM2_CNT

counter register which was configured to increment every cycle of TIM2’s clock [1].

Then, using the external interrupt line EXTI2 setup with pin PA2 on the microcontroller,

interrupt requests (IRQ) prompted an IRQ handler necessary for counter start, stop and

read operations [2]. Finally, code was written in order to calculate the period and

frequency of the input signal which was to be displayed on the console.

Figure 2: Introductory Lab Part 2 Set-up [1]

 3

Completion of part 2 of the introductory lab built a foundation for the PWM Generation

and Monitoring System project. As per the project description previously discussed, the

existing code was designed to function as specified. The corresponding pin, signal and

direction are mapped out for each respective piece of hardware as in table 1. As partial

completion of the design approach, pseudo code as shown in figure 3 was written to

begin to put together the appropriate operations and initializations involved in developing

Table 1: Pin Map for LCD Interface [1]

Figure 3: Pseudo Code

 4

the system. This would require initializations for; port B to operate the LCD, PC1 for

polling the ADC reading, and additional port A pins. Furthermore, initialization functions

would be needed for LCD configuration and ADC/DAC configuration. At this stage in

the design process, it was determined that an infinite while loop in the main function

would be responsible for administering LCD write and ADC read operations.

 Design Implementation
The solution for this project can be further divided into 3 subsections to aid in

understanding the congruent function of the PWM Generation and Monitoring System

project.

ADC
The built-in analog-to-digital converter on the STM32F051R8T6 microcontroller

is configured as analog input on pin PC1 as in figure 4 below. In order to

continuously measure the analog voltage signal from the potentiometer the ADC

data register (ADC_DR) is polled from the infinite while loop (while (1)) in the

programs main function. However, before this can work the ADC must be

properly initialized. In order for the project to work access to the ADC channel

selection (ADC_CHSELR), data (ADC_DR), control (ADC_CR), sampling time

(ADC_SMPR), interrupt and status (ADC_ISR) and configuration

Figure 4: PC1 as Analog

Input to ADC [1]

 5

(ADC_CFGR1) registers are needed [3]. Within an initialization function titled

myConverter_Init the following steps are performed in this order;

1. Clock enabled for ADC

2. Data resolution is set to 12

3. Overrun management mode set to overwrite ADC_DR contents (can

only be written while ADSTART = 0)

4. Continuous conversion mode is set (can only be written while

ADSTART = 0)

5. Set ADC enable bit to 1 of the ADC_CR

6. Set sampling time to 239.5 ADC clock cycles (can only be written

while ADSTART = 0)

7. Set ADC conversions to channel 11

8. Start the ADC

A fully commented screenshot of code is provided in figure 5. Following step 7 a

wait statement is inserted to ensure the ADC ready flag is set to 1. This bit is set

after the ADC is enabled and when it becomes ready to accept conversion

Figure 5: myConverter_Init Function

 6

requests. Two more wait statements within the main functions infinite while loop

check to ensure the ADC is ready for conversion and that the channel conversion

is complete. The ADC is now ready for conversion and can be polled through

PC1.

DAC
The digital signal from the ADC is passed on to the DAC where it is restored to

an analog signal. The analog signal from the DAC drives the optocoupler to adjust

the frequency of the PWM signal generated from the 555 timer as in figure 6. The

DAC is configured as analog output on pin PA4 of the microcontroller. In the

same initialization function as before called myConverter_Init, the appropriate

steps are performed by accessing the DAC control register (DAC_CR). First, a

clock is enabled for the DAC followed by setting the DAC channel1 enable bit to

1. These operations can be referred to in the previous sections figure 5.

Additionally, the contents of the ADC data register are passed on to the DAC data

register (DAC_DHR12R1) in the while (1) statement in the programs main

function. These are necessary procedures in setting up the DAC for conversion of

the signal received from the ADC [3].

Figure 6: System Path (DAC to Optocoupler) [1]

 7

LCD
The LCD is implemented to display the potentiometer resistance and the

frequency of the 555-timer input signal; both of which are dependent on the

voltage across the potentiometer. It is important to understand that the values sent

to be displayed by the LCD must be sent digit by digit as their appropriate ASCII

value [4]. This deliverable is met by applying the initialization functions

myLCD_Init, myLCD_Display and functions for converting the values of both

the frequency and resistance to ASCII called myRes_Calc and myFreq_Calc

respectively. First, myLCD_Init is completes the following steps;

1. DDRAM access is performed using 8-bit interface

2. Display is turned on

3. DDRAM access is auto-incremented after each access so characters

written to display are not overlapped

4. Clear display

Each instruction in the initialization function is preceded by four instructions

necessary to establish handshaking with the LCD. These instructions first make

bit 4 of PB to become 1 in order to assert enable followed by a while statement

that waits for bit 7 of PB to become 1 signaling the latter step is done. Then, a

Figure 7: myLCD_Init Function

 8

software write makes PB become 0 again to deassert enable followed by a second

while which waits for bit 7 of PB to again be 0 to indicate enable has been

deasserted [5]. Figure 7 above shows an example of this procedure.

Next, the data present in ADC_DR and the calculated frequency must be sent in

ASCII, digit by digit, through separate instructions to the LCD display. Before

this data can be passed into the myLCD_Display function, it first must be

manipulated by the myRes_Calc and myFreq_Calc functions. Both functions

work in the same manner with the only difference being that on handles resistance

and one handles frequency. The myRes_Calc function can be seen in figure 8

above [4].

Since the LCD is required to display 4 digits for resistance each digit is assigned a

place value with the right most digit being the thousandths place and the left most

digit being the ones place value. The function calculates the thousandths digit

first. The total decimal value called ‘resistance’ is divided by 1000. The result of

this division will be a single digit number ranging from 0-9 possibly with non-

zero values after the decimal. However, because the variable that holds the

thousandths place value is of type int the decimals are truncated leaving a single

digit ranging from 0-9. The hundredths place value is determined next by dividing

Figure 8: myRes_Calc Function (Identical to myFreq_Calc Function)

 9

by 100 after the thousandths place value is subtracted from the original value.

Then the tenths place is calculated by dividing by 10 after the thousandths and

hundredths place values are subtracted from the original value. Lastly the ones

place value is found by a trivial division by 1 after subtracting the all the other

place values from the original number. Once each of the 4 digits are calculated,

decimal 48 is added to each one respectively in order to determine its ASCII value

[4]. An example is done by hand to show how this would work below. Note that

the myFreq_Calc function works exactly the same.

Finally, the myLCD_Display function is used to send each digit or character in

ASCII separately to the display shown in figure 9. As previously discussed, each

write instruction is followed by 4 handshaking instructions. The LCD display

appears as shown in figure 8. The resistance and frequency data are sent as

variables and therefore must be left aligned after a bitwise ‘or’ with 0x0020. This

ensures that none of the data is altered when writing to the LCD.

Figure 9: myLCD_Display Function

 10

Analysis
Throughout the design process it is necessary to assess the project to ensure correctness. One

method that was used frequently was to write trace_printf statements to the console. These prints

could be compared to the LCD display values for both frequency and resistance. Several

trace_printf statements were also used to track the program flow and locate any possible

structural issues. An example is shown in figure 10. These are some techniques used for

implementing the ADC, DAC and LCD components. The development of this project required

extensive troubleshooting and analysis to understand how the system operates as a whole.

Figure 10: Comparison of LCD a) and Console Output b)

a)

b)

 11

One particular issue encountered was rooted in the failure to appropriately establish the

handshaking procedure with the LCD. Initially the program was written with the incorrect

handshaking steps as discussed earlier and the LCD was not being cleared. A flow diagram of

the handshaking procedure is seen in figure 11. A large portion of understanding the system

came from hands-on experience and observations. Some measurement errors may arise from

software such as the variable type used to store numbers and how those numbers are rounded or

manipulated by operations. Also, the program flow and overhead caused by executing function

could create error in a system that relies on real time measurements

as well. However, the project encounters limitations in its ability to

both measure frequency and measure resistance due to the system.

The frequency is determined by dividing the system clock of

48MHz with the timer pulse count recorded in TIM2_CNT.

Limitations arise on both the upper and lower ends of the measured

frequency. First, it must be taken into consideration that an

interrupt request takes time to service. Once a rising edge is

detected the system will prompt the IRQ handler. If before the

handler operation can be executed, the 555 timer sends a second

rising edge it will be missed. This would effect lower frequency

readings in a significant manner. Additionally, for higher

frequencies the calculation may become inaccurate in instances where consecutive rising edges

occur outside the maximum range of TIM2. TIM2 is a 32-bit counter and therefore is capable of

counting to 232 – 1 = 4294967295. If the time between two consecutive rising edges exceeds this

Figure 11: Flow Diagram of

Handshaking Procedure

 12

range TIM2 will experience overflow and will begin the count over again as it is an auto-reload

counter [6].

Likewise, the resistance measurement also experiences some short comings due to system

design. In the myADC_Init function the ADC’s resolution is set to 12 meaning that the

ADC_DR is capable of recording 212 – 1 = 4095. Unfortunately, the maximum resistance value

of the potentiometer is 5000. For this reason, a scaling factor was introduced to bring the

resistance to a more accurate reading. Considering that the ADC_DR value maximum is 4095

and the true maximum is 5000, the scaling factor was determined by dividing 5000 by 4095. In

order to implement this the ADC_DR value is assigned to a variable called ADC_val inside

while (1) in the main function as shown in figure 9. ADC_val multiplied 5000 and the result is

then divided by 4095 [6]. This method proves to give an accurate resistance reading on the LCD

display when compared with the true value and trace_printf statements.

Reflection and Recommendations
Through techniques discussed earlier the project presented in this report proves to accurately

achieve the goals outlined in the project description. Upon further study and analysis it can be

seen that there are many areas subject to potential improvement. The developed C-program is

written in a basic format meaning that procedures are done on an instruction-by-instruction basis

without the use of many iterative procedures. Refer to a complete listing of commented code in

Appendix A at the back of this report. The program was developed in the way for ease of

understanding and a better ability to observe the commands written line by line. This program

also makes use of functions and function calls in an attempt to keep the format clean and easy to

follow. Some pivotal lessons acquired from completing this project should also be noted. One

example in particular was the use of the four handshaking instructions necessary for writing to

 13

the LCD. This enabled the LCD to display the desired output. It is also important to note that

multiple trace_printf statements can create a fair amount of overhead on the system software.

While a trace_printf statement is running, it will prevent the processor from executing other

instructions. This can slow down the system and present other errors within such a system that

relies on real-time data. This triggered issues early on when trying to read frequency and

resistance.

Conclusion
The PWM Signal Generation and Monitoring System project was proven to be attainable through

the use of methods, techniques and knowledge discussed in this report. Extensive work was

placed on both the development and testing of the system in order to meet the specifications

outlined in the lab manual and the previous Project Description section. The measurements

required are accurately determined by the use of several hardware components working

simultaneously under the designed software. The implemented design successfully controls and

measures a square-wave signal generated from the 555 timer. The measured resistance value

from the external potentiometer correctly determines this frequency using the built-in ADC and

DAC features. This is a necessary part to drive the external optocoupler and ultimately adjust the

signal frequency at the 555 timer. Lastly, the designed system is able to successfully

communicate with the LCD through the 8-bit parallel interface in order to display the

measurements as an accurate reading. The design process and final result has served as a

fundamental tool in understanding the development and applications of embedded systems.

 14

Bibliography

[1] D. Rakhmatov, "ECE 355: Microprocessor-Based Systems Laboratory Manual (ONLINE),"

University of Victoria, Victoria, 2020.

[2] D. Rakhmatov, "I/O Examples," University of Victoria, Victoria, 2020.

[3] D. Rakhmatov, "Lecture 17," University of Victoria, Victoria, 2020.

[4] D. Rakhmatov, "Lecture 16," University of Victoria, Victoria, 2020.

[5] L. Hitachi, "HD44780U (LCD-II) Hitachi," Hitachi, Victoria, 1998.

[6] STMicroelectronics, "STM32F0 Reference Manual," STMicroelectronics - All Rights

Reserved, Victoria, 2014.

[7] D. Rakhmatov, "Interface Examples," University of Victoria, Victoria, 2020.

[8] V. Semiconductors, "Optocoupler, Phototransistor Output, with Base Connection," Vishay,

Victoria, 2012.

[9] STMicroelectronics, "NE555 General-purpose single bipolar timers," STMicroelectronics -

All Rights Reseerved, Victoria, 2012.

 1

Appendix A – Complete Listing of Annotated Code
This section provides a full listing of well-commented source code to be referenced as necessary.

The following C-program is a direct copy of the code implemented for this project and discussed

in this report.

//

// This file is part of the GNU ARM Eclipse distribution.

// Copyright (c) 2014 Liviu Ionescu.

//

// --

// School: University of Victoria, Canada.

// Course: ECE 355 "Microprocessor-Based Systems".

// This is template code for Part 2 of Introductory Lab.

//

// See "system/include/cmsis/stm32f0xx.h" for register/bit definitions.

// See "system/src/cmsis/vectors_stm32f0xx.c" for handler declarations.

// --

#include <stdio.h>

#include "diag/Trace.h"

#include "cmsis/cmsis_device.h"

// --

//

// STM32F0 empty sample (trace via $(trace)).

//

// Trace support is enabled by adding the TRACE macro definition.

// By default the trace messages are forwarded to the $(trace) output,

// but can be rerouted to any device or completely suppressed, by

// changing the definitions required in system/src/diag/trace_impl.c

// (currently OS_USE_TRACE_ITM, OS_USE_TRACE_SEMIHOSTING_DEBUG/_STDOUT).

//

 2

// ----- main() ---

// Sample pragmas to cope with warnings. Please note the related line at

// the end of this function, used to pop the compiler diagnostics status.

#pragma GCC diagnostic push

#pragma GCC diagnostic ignored "-Wunused-parameter"

#pragma GCC diagnostic ignored "-Wmissing-declarations"

#pragma GCC diagnostic ignored "-Wreturn-type"

/* Clock prescaler for TIM2 timer: no prescaling */

#define myTIM2_PRESCALER ((uint16_t)0x0000)

/* Maximum possible setting for overflow */

#define myTIM2_PERIOD ((uint32_t)0xFFFFFFFF)

#define myTIM3_PRESCALER ((uint16_t)47999)

void myGPIO_Init(void);

void myLCD_Init(void);

void myTIM2_Init(void);

void myEXTI_Init(void);

void myConverter_Init(void);

void myLCD_Display(void);

void myRes_Conv(void);

void myFreq_Conv(void);

// Declare/initialize your global variables here...

// NOTE: You'll need at least one global variable

// (say, timerTriggered = 0 or 1) to indicate

// whether TIM2 has started counting or not.

int timerTriggered = 0;

int frequency = 0;

float count_val = 0;

//float period = 0;

int ADC_val = 0;

float scalar = (5000/4095);

int resistance = 0;

 3

//using type int to truncate decimals during conversion functions

int thous_res = 0;

int huns_res = 0;

int tens_res = 0;

int ones_res = 0;

int thous_freq = 0;

int huns_freq = 0;

int tens_freq = 0;

int ones_freq = 0;

int main(int argc, char* argv[])

{

 trace_printf("This is the final part of ECE 355 Lab...\n");

 trace_printf("System clock: %u Hz\n", SystemCoreClock);

 myGPIO_Init();/* Initialize I/O port PA */

 myTIM2_Init();/* Initialize timer TIM2 */

 myEXTI_Init();/* Initialize EXTI */

 myLCD_Init();/* Initialize EXTI */

 myConverter_Init();/* Initialize ADC and DAC*/

 trace_printf("Initialization Done\n");

 while (1)

 {

 while((ADC1->ISR & 0x1) == 0);//While ADC ready

 while((ADC1->ISR & ADC_ISR_EOC) != ADC_ISR_EOC);//while channel conversion complete

 ADC_val = ADC1->DR;//read ADC_DR and assign to variable

 DAC->DHR12R1 = ADC1->DR;//pass ADC data to DAC

 resistance = ADC_val * scalar;//operation to calculate POT resistance

 myRes_Conv();//call to convert individual digits to ASCII

 4

 myFreq_Conv();//call to convert individual digits to ASCII

 myLCD_Display();//call to LCD display function

 }

 return 0;

}

void myLCD_Display ()

{

 //<<8 to left shift data

 //0x20 to write data, bit 5 set to 1

 //send prefix frequency display format

 GPIOB->ODR = 0x8000;//DDRAM address set to top row first position

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 GPIOB->ODR = 0x4620;//write F to top row LCD

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 GPIOB->ODR = 0x3A20;//write : to top row LCD

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 //send frequency data

 GPIOB->ODR = 0x20 | (thous_freq<<8);//write first frequency digit

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 5

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 GPIOB->ODR = 0x20 | (huns_freq<<8);//write second frequency digit

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 GPIOB->ODR = 0x20 | (tens_freq<<8);//write third frequency digit

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 GPIOB->ODR = 0x20 | (ones_freq<<8);//write fourth frequency digit

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 //send suffix frequency display format

 GPIOB->ODR = 0x4820;//write H to top row LCD

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 GPIOB->ODR = 0x7A20;//write z to top row LCD

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 //send prefix resistance display format

 GPIOB->ODR = 0xC000;//DDRAM address set to bottom row first position

 6

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 GPIOB->ODR = 0x5220;//write R to bottom row LCD

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 GPIOB->ODR = 0x3A20;//write : to bottom row LCD

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 //send resistance data

 GPIOB->ODR = 0x20 | (thous_res<<8);//write first resistance digit

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 GPIOB->ODR = 0x20 | (huns_res<<8);//write second resistance digit

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 GPIOB->ODR = 0x20 | (tens_res<<8);//write third resistance digit

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 GPIOB->ODR = 0x20 | (ones_res<<8);//write fourth resistance digit

 7

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 //send suffix resistance display format

 GPIOB->ODR = 0x4F20;//write O to bottom row LCD

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

 GPIOB->ODR = 0x6820;//write h to bottom row LCD

 GPIOB->ODR |= GPIO_ODR_4;//LCD handshake enable

 while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_SET);//Done

 GPIOB->ODR &= ~(GPIO_ODR_4);//deassert enable

 while(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) != Bit_RESET);//reset Done

}

void myRes_Conv()

{

 //variables are type int

 //decimal value for each digit place

 thous_res = resistance / 1000;//returns single digit value for thousandths place

 huns_res = (resistance - thous_res * 1000) / 100;//returns single digit value for hundredths place

 tens_res = (resistance - thous_res * 1000 - huns_res * 100) / 10;//returns single digit value for tenths place

 ones_res = (resistance - thous_res * 1000 - huns_res * 100 - tens_res * 10);//returns single digit value for ones

place

 //convert to ASCII value

 thous_res += 48;

 huns_res += 48;

 tens_res += 48;

 ones_res += 48;

}

void myFreq_Conv()

 8

{

 //variables are type int

 //decimal value for each digit place

 thous_freq = frequency / 1000;//returns single digit value for thousandths place

 huns_freq = (frequency - thous_freq * 1000) / 100;//returns single digit value for hundredths place

 tens_freq = (frequency - thous_freq * 1000 - huns_freq * 100) / 10;//returns single digit value for tenths place

 ones_freq = (frequency - thous_freq * 1000 - huns_freq * 100 - tens_freq * 10); //returns single digit value for

ones place

 //convert to ASCII value

 thous_freq += 48;

 huns_freq += 48;

 tens_freq += 48;

 ones_freq += 48;

}

void myGPIO_Init()

{

 /* Enable clock for GPIOA peripheral */

 // Relevant register: RCC->AHBENR

 RCC->AHBENR |= RCC_AHBENR_GPIOAEN;

 /* Enable clock for GPIOB peripheral */

 // Relevant register: RCC->AHBENR

 RCC->AHBENR |= RCC_AHBENR_GPIOBEN;

 /* Enable clock for GPIOC peripheral */

 // Relevant register: RCC->AHBENR

 RCC->AHBENR |= RCC_AHBENR_GPIOCEN;

 /* Configure PA1 as input */

 // Relevant register: GPIOA->MODER

 GPIOA->MODER &= ~(GPIO_MODER_MODER1);//PA1 input from 555 timer

 /* Ensure no pull-up/pull-down for PA1 */

 // Relevant register: GPIOA->PUPDR

 GPIOA->PUPDR &= ~(GPIO_PUPDR_PUPDR1);

 9

 /* Configure PC1 as analog input */

 // Relevant register: GPIOC->MODER

 GPIOC->MODER |= GPIO_MODER_MODER1;//ADC Analog in from POT

 /* Configure PA4 as output */

 // Relevant register: GPIOA->MODER

 GPIOA->MODER |= GPIO_MODER_MODER4;//DAC Analog out to opto

 /* Configure PB7 as input */

 // Relevant register: GPIOB->MODER

 GPIOB->MODER &= ~(GPIO_MODER_MODER7);//PB7 DONE LCD

 /* Configure PB4-6 and 8-15 as output */

 // Relevant register: GPIOB->MODER

 GPIOB->MODER |= (GPIO_MODER_MODER4_0);//PB4 ENB LCD

 GPIOB->MODER |= (GPIO_MODER_MODER5_0);//PB5 RS

 GPIOB->MODER |= (GPIO_MODER_MODER6_0);//PB6 R/W

 GPIOB->MODER |= (GPIO_MODER_MODER8_0);//PB8 D0

 GPIOB->MODER |= (GPIO_MODER_MODER9_0);//PB9 D1

 GPIOB->MODER |= (GPIO_MODER_MODER10_0);//PB10 D2

 GPIOB->MODER |= (GPIO_MODER_MODER11_0);//PB11 D3

 GPIOB->MODER |= (GPIO_MODER_MODER12_0);//PB12 D4

 GPIOB->MODER |= (GPIO_MODER_MODER13_0);//PB13 D5

 GPIOB->MODER |= (GPIO_MODER_MODER14_0);//PB14 D6

 GPIOB->MODER |= (GPIO_MODER_MODER15_0);//PB15 D7

}

 10

void myTIM2_Init() //unchanged from part 1

{

 /* Enable clock for TIM2 peripheral */

 // Relevant register: RCC->APB1ENR

 RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;

 /* Configure TIM2: buffer auto-reload, count up, stop on overflow,

 * enable update events, interrupt on overflow only */

 // Relevant register: TIM2->CR1

 TIM2->CR1 = ((uint16_t)0x008C);

 /* Set clock prescaler value */

 TIM2->PSC = myTIM2_PRESCALER;

 /* Set auto-reloaded delay */

 TIM2->ARR = myTIM2_PERIOD;

 /* Update timer registers */

 // Relevant register: TIM2->EGR

 TIM2->EGR = TIM_EGR_UG;//((uint32_t)0x00000001);

 /* Assign TIM2 interrupt priority = 0 in NVIC */

 // Relevant register: NVIC->IP[3], or use NVIC_SetPriority

 NVIC_SetPriority(TIM2_IRQn, 0);

 /* Enable TIM2 interrupts in NVIC */

 // Relevant register: NVIC->ISER[0], or use NVIC_EnableIRQ

 NVIC_EnableIRQ(TIM2_IRQn);

 /* Enable update interrupt generation */

 // Relevant register: TIM2->DIER

 TIM2->DIER |= TIM_DIER_UIE;

}

void myEXTI_Init()

 11

{

 /* Map EXTI2 line to PA2 */

 // Relevant register: SYSCFG->EXTICR[0]

 SYSCFG->EXTICR[0] |= SYSCFG_EXTICR1_EXTI1_PA;//&= 0x0000;

 /* EXTI2 line interrupts: set rising-edge trigger */

 // Relevant register: EXTI->RTSR

 EXTI->RTSR |= EXTI_RTSR_TR1;

 /* Unmask interrupts from EXTI2 line */

 // Relevant register: EXTI->IMR

 EXTI->IMR |= EXTI_IMR_MR1;

 /* Assign EXTI2 interrupt priority = 0 in NVIC */

 // Relevant register: NVIC->IP[2], or use NVIC_SetPriority

 NVIC_SetPriority(EXTI0_1_IRQn, 0);

 /* Enable EXTI2 interrupts in NVIC */

 // Relevant register: NVIC->ISER[0], or use NVIC_EnableIRQ

 NVIC_EnableIRQ(EXTI0_1_IRQn);

}

void myLCD_Init()

{

 GPIOB->ODR = 0;

 GPIOB->ODR = 0b0011000000000000;//DDRAM access is performed using 8-bit interface

 GPIOB->ODR |= GPIO_ODR_4;//enable write to LCD

 while((GPIOB->IDR & GPIO_IDR_7) == 0);//handshake

 GPIOB->ODR ^= GPIO_ODR_4;//disable write to LCD

 while((GPIOB->IDR & GPIO_IDR_7) != 0);//handshake

 GPIOB->ODR = 0b0000110000000000;//display on

 GPIOB->ODR |= GPIO_ODR_4;//enable write to LCD

 while((GPIOB->IDR & GPIO_IDR_7) == 0);//handshake

 GPIOB->ODR ^= GPIO_ODR_4;//disable write to LCD

 while((GPIOB->IDR & GPIO_IDR_7) != 0);//handshake

 12

 GPIOB->ODR = 0b0000011000000000;//DDRAM address is auto-incremented after each access

 GPIOB->ODR |= GPIO_ODR_4;//enable write to LCD

 while((GPIOB->IDR & GPIO_IDR_7) == 0);//handshake

 GPIOB->ODR ^= GPIO_ODR_4;//disable write to LCD

 while((GPIOB->IDR & GPIO_IDR_7) != 0);//handshake

 GPIOB->ODR = 0b0000000100000000;//clear display

 GPIOB->ODR |= GPIO_ODR_4;//enable write to LCD

 while((GPIOB->IDR & GPIO_IDR_7) == 0);//handshake

 GPIOB->ODR ^= GPIO_ODR_4;//disable write to LCD

 while((GPIOB->IDR & GPIO_IDR_7) != 0);//handshake

 trace_printf("LCD Init done\n");

}

void myConverter_Init()

{

 RCC->APB2ENR |= RCC_APB2ENR_ADCEN;//enable ADC clock

 RCC->APB1ENR |= RCC_APB1ENR_DACEN;//enable DAC clock

 ADC1->CFGR1 &= ~(ADC_CFGR1_RES);//set data resolution to 12

 ADC1->CFGR1 |= ADC_CFGR1_OVRMOD;//set overrun management mode to overwrite ADC_DR contents

 ADC1->CFGR1 |= ADC_CFGR1_CONT;//set continuous conversion mode

 ADC1->CR |= ADC_CR_ADEN;//sets ADC enable bit to 1

 ADC1->SMPR |= ADC_SMPR_SMP;//sets sampling time to 239.5 ADC clock cycles when ADSTART = 0

 ADC1->CHSELR |= ADC_CHSELR_CHSEL11;//set to channel 11 for ADC conversion.

 while((ADC1->ISR & ADC_ISR_ADRDY) != 1);//wait until ADC ready flag is 1

 ADC1->CR |= ADC_CR_ADSTART;//starts ADC

 13

 DAC->CR = DAC_CR_EN1;//enabled DAC

}

/* This handler is declared in system/src/cmsis/vectors_stm32f0xx.c */

void TIM2_IRQHandler()

{

 /* Check if update interrupt flag is indeed set */

 if ((TIM2->SR & TIM_SR_UIF) != 0)

 {

 trace_printf("\n*** Overflow! ***\n");

 /* Clear update interrupt flag */

 // Relevant register: TIM2->SR

 TIM2->SR &= ~(TIM_SR_UIF);

 /* Restart stopped timer */

 // Relevant register: TIM2->CR1

 TIM2->CR1 |= TIM_CR1_CEN;//TIM2_CR1_CEN

 }

}

/* This handler is declared in system/src/cmsis/vectors_stm32f0xx.c */

void EXTI0_1_IRQHandler()

{

 // Declare/initialize your local variables here...

 //float count_val = 0;

 //float period = 0;

 //float frequency = 0;

 /* Check if EXTI2 interrupt pending flag is indeed set */

 if ((EXTI->PR & EXTI_PR_PR1) != 0)

 {

 //

 // 1. If this is the first edge:

 if(timerTriggered == 0){

 // - Clear count register (TIM2->CNT).

 14

 TIM2->CNT = 0;

 // - Start timer (TIM2->CR1).

 TIM2->CR1 |= TIM_CR1_CEN;

 timerTriggered = 1;

 }

 // Else (this is the second edge):

 else{

 // - Stop timer (TIM2->CR1).

 TIM2->CR1 &= ~(TIM_CR1_CEN);

 /////////////////////////////////EXTI->IMR &= ~(EXTI_IMR_MR1);

 // - Read out count register (TIM2->CNT).

 count_val = TIM2->CNT;

 // - Calculate signal period and frequency.

 frequency = 48000000 / count_val;

 //period = 1 / frequency

 timerTriggered = 0;

 // - Print calculated values to the console.

 // NOTE: Function trace_printf does not work

 // with floating-point numbers: you must use

 // "unsigned int" type to print your signal

 // period and frequency.

 //

 //trace_printf("Count value: %f\n", count_val);

 //trace_printf("Period: %f s\n", period);

 //trace_printf("Frequency: %f Hz\n", frequency);

 //trace_printf("Resistance: %d Ohms\n", resistance);

 }

 // 2. Clear EXTI2 interrupt pending flag (EXTI->PR).

 // NOTE: A pending register (PR) bit is cleared

 // by writing 1 to it.

 //

 EXTI->IMR |= EXTI_IMR_MR1;

 15

 EXTI->PR = EXTI_PR_PR1;

 }

}

#pragma GCC diagnostic pop

// --

	List of Figures
	List of Tables
	Glossary
	Project Description
	Design Process
	Design Approach
	Design Implementation
	ADC
	DAC
	LCD

	Analysis
	Reflection and Recommendations
	Conclusion
	Bibliography
	Appendix A – Complete Listing of Annotated Code

